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A Theory of Solid Solutions and Solid-Fluid Equilibria 
for Mixtures 

X. Cottin-' and P. A. Monson 2"3 

We describe the application of a recently developed cell theory of solid solutions 
to the calculation of solid phase thermodynamics and solid-fluid phase eqt, i- 
libria for hard sphere mixtures. We focus on freezing into both substitutionally 
ordered and substitutionally disordered solid solutions. A comparison with 
Monte Carlo simulation results is presented. 
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1. I N T R O D U C T I O N  

Two classes of  approach have been taken in studies of  solid-fluid equi- 
libria. The most  ambitious approach has been to calculate the properties of  
both phases within the context of  a single theory, This is exemplified by the 
order-disorder  theory of Lennard-Jones  and Devonshire [ 1 ] which treats 
the fluid as a disordered solid and, more recently, by the density functional 
theory [2--4], which treats the solid as a highly inhomogeneous  fluid, an 
idea originating from the work of Kirkwood and Monroe  [ 5 ]. The density- 
functional-theory work has attracted considerable interest in recent years 
since it seems to provide a quite accurate picture of  the solid structure 
while being based on accurate approximations for the fluid properties 
[2 -4 ] .  In contrast,  the treatment of  a fluid as a disordered solid is now 
considered to be incorrect since it imposes too high a degree of  order on 
the fluid [6] .  An alternative to these single-phase strategies is to treat the 
two phases by theories appropriate  to each. This approach was initiated by 

~ Paper presented at the Twelfth Symposium on Thermophysical Properties, June 19-24. 
1994, Boulder, Colorado, U.S.A. 

2 Chemical Engineering Department. University of Massachusetts at Amherst, Amherst, 
Massachusetts 01003. U.S.A. 
To whom correspondence should be addressed. 

733 

0195-928X 95 0500-0733S07.50 0 c 1995 Plenum Publishing Corporation 



734 Conin and Monson 

Barker and Henderson [7] ,  who used thermodynamic perturbation theory 
for the fluid phase and the cell theory for the solid phase. Although this 
approach is in some sense less satisfying than if a single theory is used for 
both phases, it does lead to quantitatively accurate results. 

We have recently adapted the latter approach to the problem of solid- 
fluid equilibria in mixtures [8].  In this work an extension of the cell theory 
for binary mixtures in the solid state was developed. In the past this theory 
had only been applied to mixtures in the liquid state, for which it is 
inappropriate. The key feature of our work is that it takes into account the 
effect of composition fluctuations on the cell potential field. This is impor- 
tant in the treatment of molecules of different size freezing into substitu- 
tionally disordered solid solutions. Application to binary hard-sphere 
mixtures was considered. The fluid phase thernaodynamic properties were 
determined from the equation of state for hard-sphere mixtures developed 
by Mansoori etal. ['9]. The predictions obtained in this way are m 
good quantitative agreement with results from Monte Carlo simulations 
[10, lJ]. 

In this paper we provide a brief review of the theory presented in 
detail i,1 Ref 8 and provide some additional results which illustrate the 
accuracy of the theory for hard-sphere mixtures freezing into substitu- 
tionally disordered solid solutions. In addition, we discuss the application 
of the approach to substitutionally ordered solid solutions or compounds. 

Substitutionally ordered solid solutions play a very important role in 
the phase diagrams of mixtures in the solid state. They arise principally 
when the components have only limited miscibility as substitutionally dis- 
ordered solids but where crystal structures of especially favorable stability 
can be formed by substitutional ordering of the components among the 
lattice sites. Such phases are often referred to as "compounds" since they 
correspond to fixed stoichiometric amounts of the pure components. While 
this designation is certainly appropriate for most inorganic solids of this 
type stabilized by covalent or ionic bonding, it is much less appropriate for 
mixtures of organic compounds and other systems where the structures are 
stabilized by van der Waals forces. For these systems the route to under- 
standing and predicting the occurrence of ordered solid solutions lies in 
understanding how different types of molecular interactions can stabilize 
these structures. 

Striking evidence for the importance of simple packing effects in the 
stability of ordered solid solutions comes fi'om recent studies of the struc- 
ture of some samples of natural opal [ 12, 13], which consists of packings 
of silica spheres, and of the flocculation of colloidal suspensions of spheres 
[ 14]. These studies suggest that hard sphere mixtures with size ratios of 
about 0.58 can form substitutionally ordered structures with stoichiometry 
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A B ,  and AB,3.  This has recently been confirmed by Madden et al. [ 15, 16] 
using Monte Carlo simulation. Further evidence for the formation of sub- 
stitutionally ordered solutions stabilized by van der Waals interactions is 
provided by studies of mixtures of helium and nitrogen at high pressure in 
which a substitutionally ordered structure with stoichiometry He( N2Jtl has 
been suggested [ 17]. In this work we describe an application of the cell 
theory to the A B ,  and ABt3 structures of hard-sphere systems as well as to 
interstitial compounds such as the NaC1 structure. A more detailed account 
of this work will appear elsewhere [ 18]. 

2. THEORY 

Our theory is based on the assumption that the configurational parti- 
tion function of a system of N molecules can be written as a product of cell 
partition functions for single molecules, each moving in a cage formed by 
its nearest neighbors fixed at their lattice sites. To generalize to substitu- 
tionally disordered solid mixtures, we introduce a mean-field approxima- 
tion for the distribution of the molecules on the lattice sites. In this case, 
a particular cell is characterized by the type of its central particle and by 
the composition and distribution of the - nearest neighbors. Consequently, 
['or a p-component mixture consisting of m~ molecules of species 1, N2 
molecules of species 2 ..... Np molecules of species p placed on a lattice of 
coordination - we can write the configurational partition function as 

N! Nl'r 
Z = N I I  N , ! . . . N p ! ] - I  I t {1) 

• _ j 

where q / = ~ . / e / t ' / " ' d r  is the partition function of cell j and Pj is the 
probability of observing cellj. 4' is the cell potential field, that is, the poten- 
tial due to the rest of the lattice acting on the central particle• For the P/'s, 
we consider the following expression: 

P i  ~ " . S I - " )  2 • . ~ t  .x ~.x ~ .x 2 .x ,, ( 2 ) 

with the constraint 

P 

.s)i = - (3) 

where .v~ denotes the mole fraction of species i and the subscript c refers to 
the type of the central particle. ,s~i i is the number of particles of species i 
present in the neighbor shell of cellj. It is worth noting at this point that 
our approximation for the cell probabilities is exactly that used in the 
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Bragg-Williams [19] approximation. This can be seen by evaluating 
Eq. ( 1 ) in the case of fixed central particles and only nearest-neighbor inter- 
action. However, our theory goes beyond that approximation. By taking 
into account density effects, via the density dependence of the cell partition 
functions, and by considering all possible nearest-neighbor environments of 
a given molecule, we provide a more realistic treatment of size-difference 
effects and local fluctuations in composition in mixtures. 

Once the set of cell partition functions has been determined at a given 
density, the Helmholtz free energy and all thermodynamic properties can 
be obtained for all compositions at that particular density. An apparent 
difficulty with this approach might be the large number of cell partition 
functions to compute, even in the simplest case of binary mixtures. This 
difficulty has been resolved by using a very efficient algorithm [8]  which 
permits simultaneous computation, via Monte Carlo integration, of all 
partition functions for a given density. 

For the case of substitutionally ordered solid solutions, this problem 
disappears due to the great reduction in cell types. Indeed, as each species 
occupies a given set of lattice points, there is only a limited number of 
possible environments for a molecule. Once these environments are deter- 
mined, one can compute the corresponding cell partition functions as 
before. For example, in the case of A B  2 structure, only two types of cells 
remain: one with a large central particle and one with a small central par- 
ticle. The probabilities of observing the different cells reduce, in this case, 
to the mole fractions of the different species. Thus, if qj and q2 are the 
respective cell partition functions evaluated at a given density, the con- 
figurational partition function of the system, at that particular density, is 
given by 

Z N/3 2N/'3 
= q l  q2 (4) 

where N is the total number of particles. 

3. APPLICATION TO BINARY HARD SPHERE MIXTURES 

3.1. Substitutionaily Disordered Solid Solutions 

We first consider substitutionally disordered binary mixtures of hard 
spheres of different sizes on a FCC lattice. We are interested in how the 
solid-phase thermodynamics and the solid-fluid phase equilibria change with 
~, the ratio of the smaller sphere diameter to that of the larger sphere. The 
solid solutions behave very differently from the fluid mixtures [8] .  In par- 
ticular, at constant pressure, the volume increases on mixing. The volume 
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of mixing gets bigger as the size ratio decreases. Clearly in a solid mixture 
the molecules of different species do not have the same ability as in a fluid 
to rearrange and as a consequence the system expands on freezing at con- 
stant pressure. The size ratio cc also has a large influence on the shape of 
the solid-fluid phase diagram of these systems [3, 8, 10, 11, 20-22]. For 
size ratios close to unity, the phase diagrams are of the spindle type. For 
ct ~ 0.93 an azeotrope appears. For a value of ~ ~ 0.85 the diagram starts 
to exhibit a eutectic. Below c~ ~ 0.85 the substitutionally disordered binary 
mixture is unstable and phase separates into two pure solid phases. 

In Fig. 1, we present the P-x phase diagram corresponding to the case 
oc = 0.93, where P is the reduced pressure Pa~j/kT and xj is the mole fraction 
in large spheres, along with a comparison with the Monte Carlo simulations 
of Kofke [ 11 ]. The cell theory result is in good agreement with simulations. 
In particular the shape of the diagram, as well as the composition of the 
azeotrope are correct. The theory is also capable of predicting correctly 
the densities at coexistence as shown in Fig. 2. The packing fraction r/ is 
defined as rl=(n/6)(N/V)(Xla~l +(1- - -x l )  0"22~3). The differences between 
the simulation results and theoretical predictions for lower values of x~ are 
principally a reflection of scatter in the Monte Carlo results [23 ]. 

The main weakness of the cell theory at this point is that it does not 
allow for structural relaxations. Since each cell is a rigid entity which scales 
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Fig. 1. Phase diagram for freezing of a binary hard sphere 
mixture of size ratio ~ = 0.93 into a substitutionally disor- 
dered solid solution. The full lines represent the predictions 
of the cell theory and the circles are the results of Monte 
Carlo simulations [ 1 I ] 
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Fig. 2. The densities at eqtlilibrium Ibr the phase 
diagram in Fig. 1. The lines represents the predictions 
of the cell theory and the circles are the simulation 
results of Kofke [ 1 I ]. 

with density: relaxation effects which naturally occur in Monte Carlo 
simulations are not allowed. As a consequence, particles do not have the 
possibility to rearrange themselves and the solid solution appears more 
nonideal than it would normally be. This effect is especially important for 
solutions of small size ratio which are dilute in the larger spheres. For 
example, in the case x = 0.85 the cell theory predicts a zone of immiscibility 
as the composition in large spheres goes to zero, while the simulation 
results predict a small region of miscibility [8, 10]. Fortunately, this 
behavior occurs close to the limit of stability of those substitutionally 
disordered solid solutions. 

3.2. Substitutionally Ordered Binary Hard Sphere Solid Solutions 

It is somewhat remarkable that hard-sphere mixtures are able to pack 
in such an efficient way as to form substitutionally ordered solid solutions. 
The experimental discovery of hard sphere structures such as A B  2 and 
ABe3 [12] for some size ratios and compositions, as well as earlier 
theoretical studies [ 13], confirmed that packing has a much greater impor- 
tance in the stability of such structures than was believed before. It is now 
important to understand this in more detail and also why some structures 
are stable while others are not. Such an understanding would certainly 
provide a good basis for extrapolation to more complex systems, such as 
rare-gas mixtures and beyond. 
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Fig. 3. The Hclmholtz free energy of a substitutionally 
ordered solid solution of hard spheres of the type ,-IB~ for a 
size ratio :~ = (I.58. The full line gives the cell theory predictions 
while the dashed line represents the simulation results of 
Eldridge et al. [ 15]. 

Z 

55.0 

,t5.0 

35.0 

25.0 

15.0 

5.0 
0.50 0.75 

! 

ii I 

I III 

s ~  

I I I I 

0.55 0.60 0.65 0.70 
1"/ 

Fig. 4. Pressure of the substitutionally ordered solid solution 
of Fig. 3 vs density. The full line gives the cell theory predic- 
tions and the dashed line represents the simulation results of 
Eldridge et al. [ 15] 
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We believe the present theory to be a useful tool in such a study. 
Although this problem will be discussed in more detail elsewhere [18],  we 
would like to present here some preliminary results in the case of a solid 
solution of the ABe3 type, with a size ratio ~=0.58,  which was the subject 
of recent Monte Carlo simulation work [ 15, 16, 24]. In Fig. 3, we present 
the Helmholtz free energy of this system as a function of the packing frac- 
tion ~1. The agreement is quite good, especially at high density. In Fig. 4, we 
show the pressure as a function of density. Although the agreement is still 
quite good, the theory overpredicts the pressure and again this is due to the 
absence of structural relaxation in the theory. A preliminary calculation of 
the full phase diagram for this system, which also includes the AB 2 solid 
phase, indicates an excellent agreement with that presented by Eldridge 
et al. [24] using Monte Carlo simulations. 

4. CONCLUSION 

We have reviewed an extension of the cell theory of Lennard-,lones 
and Devonshire 1o mixtures. Through a mean-field approximation for the 
distribution of the particles on the lattice sites, we treat more realistically 
the local fluctuations in composition which arise in a mixture. Results in 
the case of binary hard sphere mixtures forming both substitutionally 
ordered and disordered solid solutions have been presented. Very good 
agreement with Monte Carlo simulations is obtained. We believe that this 
approach is a valuable tool in the study of the thermodynamics of solid 
solutions and in conjunction with a theory for fluid phase properties for the 
calculation of solid-fluid phase equilibria. Further studies of substitu- 
tionally ordered solid solutions are in progress and these will be presented 
in due course. 
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